Explaining SRI (System of Rice Intensification) adoption among smallholder farmers in Timor Leste

Martin Noltze, Stefan Schwarze & Matin Qaim Department of Agricultural Economics and Rural Development, University of Goettingen Contact: mnoltze@uni-goettingen.de

1. Introduction

- A recent slowdown in yield gains and considerable ecological footprints call for innovative strategies in intensive rice production.
- SRI promises productivity growth and sustainable management of water resources and soils.
- However, adoption remains limited among smallholder farmers and there are knowledge gaps on what determines SRI adoption.

4. Results

Determinants of adoption status, depth and intensity

Defining adoption

Based on group clustering, adopter households have >=5 components adopted (min. 0, max. 8) (Figure 1).

3937

 \rightarrow This study aims to detect determinants of SRI adoption analysing household and plot level data from Timor Leste.

2. SRI in Timor Leste

• Since 2007, SRI is a national extension strategy, implemented by the Ministry of Agriculture and Fisheries (MAF).

SRI components and households adoption rates of survey sample

Components		Description	Adopted by (%)	
i	Nursery	carefully managed mat or tray nurseries	39.8	
ii	Compost	application of compost on plots	12.3	
iii	Transplanting	planting young seedlings < 15 days	57.9	
iv	Row planting	square pattern row planting on plot	65.7	
V	Single seedlings	only one seedling per hill	54.2	
vi	Distance	distance of seedlings from 20x20 to 50x50cm	63.5	
vii	Re-irrigation	alternate wetting and drying on plots	54.2	
viii	Weeding	multiple weedings (with hand weeders)	91.9	
Source	e: Own survey data.			

Weeding with hand weeder

Pictures: Noltze 2009.

Portable mat nurseries

1. Adoption status

DH model (1st hurdle)

Variable	Sign	Sig.
Dependent variable: Adoption status of household (0-1)		
Years of schooling household head	-	*
Total land area (ha)	+	***
Share of rice area / total farm size		*
Participation in SRI training (dummy)	+	***
Participation in Hybrid Rice programme (dummy)	+	***

2. Adoption depth

Poisson model

Variable	Sign	Sig.
Dependent variable: Number of SRI components adopted on plot (
Time from house to plot (min)	-	**
Plot level (1=flat,, 4=slight slope)	+	**
Irrigation system on plot (dummy)	+	***
Farmer has full control over water management (dummy)	+	*
Share of loam in soil (%)	+	***

3. Adoption intensity

DH model (2nd hurdle)

Variable

Sign Sig.

Dependent variable: Area under SRI technology per household (hectare)

Compost preparation

3. Methods

Data

• In 2009, a comprehensive farm survey covered 397 randomly selected small-scale rice producers (participants & non-participants) of SRI training), including 475 rice plots.

Challenge

- Estimation of the influence of household and plot characteristics on a multiple-stage adoption decision-making process:
 - **1. Status** adoption decision (0-1),
 - **2. Depth** number of components on plot decision (0-8) and
 - **3. Intensity** area under SRI decision.

Adult household members 18-65 years (dummy)	+	*
Total land area (ha)	+	***
Share of rice area / total farm size	+	***
Participation in Hybrid Rice programme (dummy)	+	*

The full models contain a number of additional plot, household and location variables. The tables provide some selected significant variables only. Source: own survey data. *,**,*** mean statistically significant at 10%, 5% and 1% level, respectively.

Key message

- **Status** extension training participation and farm size are \checkmark determining the initial adoption decision.
- **Depth** SRI components are adopted on plots nearby the main \checkmark farm, with functioning irrigation systems that can be individually managed and have quality soils.
- **Intensity** depends on factors like labour availability. At this stage, \checkmark SRI training does not influence the decision.

5. Conclusion

• Various farm and farmer characteristics are determining the adoption of the novel technology.

Regression analysis

- The so-called double hurdle (DH) model, developed by Cragg (1971), allows to estimate (1.) status and (3.) intensity simultaneously based on two independent decisions.
- The (2.) depth of adoption is estimated by a count data model using poisson regression (Wooldridge 2002).
- Intra-farm adoption follows a multiple-stage decision making process, considering differing factors on each stage.
- A successful introduction of SRI has to refer to various determinants within the multiple-stage decision-making process to enhance and sustain SRI adoption by small-scale producers.

References

Cragg, J.G., 1971. Some statistical models for limited dependent variables with application to the demand for durable goods. Econometrica 39(5), 829-844. Wooldridge, J., 2002. Econometric analysis of cross section and panel data. The MIT press.

Acknowledgement: The authors gratefully acknowledge financial support through the European Commission (EC) and the German Federal Ministry for Economic Cooperation and Development (BMZ).